Cambiando la Identidad celular para crear una verdadera medicina personalizada

Células madre, pluripotencia inducida y reprogramación celular

Autores/as

  • Mohammed A. Mostajo-Radji Biotecnólogo; investigador de Celulas Madre y Biologia Regenerativa. Department of Molecular and Cellular Biology; Department of Stem Cell and Regene-rative Biology, Harvard University. Cambridge, Massachusetts, United States of America.
  • Leonardo M. R. Ferreira Bioquímico. investigador de Celulas Madre y Biologia Regenerativa. Department of Molecular and Cellular Biology; Department of Stem Cell and Regene-rative Biology, Harvard University. Cambridge, Massachusetts, United States of America.

Palabras clave:

reprogramación celular, células madre, pluripotencia, medicina personalizada

Resumen

El Premio Nobel 2012 en Fisiología o Medicina fue concedido a Sir John Gurdon y Shinya Yamanaka por sus avances en la reprogramación celular. Estos descubrimientos no sólo cambiaron nuestra visión del proceso de diferenciación celular, pero también tienen el potencial de revolucionar la medicina. Proporcionando una breve contextualización histórica y un resumen sucinto de las metodologías actuales, presentamos los principales avances en la investigación básica, así como sus posibles aplicaciones en la clínica. Esta revisión tiene como objetivo proporcionar un panorama general del estado actual sobre el campo de reprogramacióncelular y sus implicaciones terapéuticas.

Métricas

Cargando métricas ...

Citas

Gurdon JB. The developmental capacity of nu-clei taken from intestinal epithelium cells of fee-ding tadpoles. J Embryol Exp Morphol 1962; 10: 622-40..

Campbell KHS, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer of a cultured cell line. Nature 1996; 380: 64-66

Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprograming: facts, hypotheses, unresol-ved issues. Cell 2010; 143(4): 508-525.

Silva J, Chambers I, Pollard S, Smith A. Nanog promotes transfer of pluripotency after cell fusion. Nature 2006; 441(7096): 997-1001.

Takahashi K, Yamanaka S. Induction of Pluri-potent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006; 126 (4): 663-676.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluri-potent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.

Masip M, Veiga A, Izpisua Belmonte JC, Simon C. Reprogramming with defined factors: from induced pluripotency to induced transdifferentia-tion. Mol Hum Reprod 2010; 16(11): 856-68.

Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415 (6875): 10351038.

Eggan K, Baldwin K, Tackett M, osborne J, Go-gos J, Chess A, et al. Mice cloned from olfactory sensory neurons. Nature 2004; 428(6978): 44-9.

Makino H, Yamazaki Y, Hirabayashi T, Kaneko R, Hamada S, Kawamura Y, et al. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex. Cloning Stem Cells 2005; 7(1): 45-61.

Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154-156.

Bongso A, Fong CY, Ng SC, Ratnam S. Isola-tion and culture of inner cell mass cells from human blastocysts. Hum Reprod 1994; 9(11): 2110-7.

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Em-bryonic stem cell lines derived from human blas-tocysts. Science 1998; 282(5391): 1145-7.

Ramalho-Santos J. Human procreation in un-chartered territory: new twists in ethical discus-sions. Hum Reprod 2011; 26(6): 1284-7.

Stadtfeld M, Hochedlinger K. Induced pluri-potency: history, mechanisms, and applications. Genes Dev 2010; 24(20): 2239-63.

Kim J, Lengner CJ, Kirak O, Hanna J, Cassady JP, Lodato MA, et al. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells 2011; 29(6): 992-1000.

Yu J, Hu K, Smuga-otto K, Tian S, Stewart R, Slukvin, II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Scien-ce 2009; 324(5928): 797-801.

Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7(5): 618-30.

Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE. Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell 2011, 8: 376-388.

Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4(5): 381-4.

Schinzel RT, Ahfeldt T, Lau FH, Lee YK, Cowley A, Shen T, et al. Efficient culturing and genetic manipulation of human pluripotent stem cells. PLoS One 2011; 6(12): e27495.

Guenther MG, Frampton GM, Soldner F, Hoc-kemeyer D, Mitalipova M, Jaenisch R, et al. Chro-matin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 2010; 7(2): 249-57.

Bock C, Kiskinis E, Verstappen G, Gu H, Boul-ting G, Smith ZD, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011; 144(3): 439-52.

Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 1990; 87(20): 7988-92.

Xie H, Ye M, Feng R, Graf T. Stepwise Repro-gramming of B Cells into Macrophages. Cell 2004; 117: 663-676.

Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogram-ming strategy. Nat Cell Biol 2011; 13(3): 215-22.

Buganim Y, Itskovich E, Hu YC, Cheng AW, Ganz K, Sarkar S, et al. Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by de-fined factors. Cell Stem Cell 2012; 11(3): 373-86.

Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct repro-gramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012; 11(1): 100-9.

Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct ge-neration of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011; 476(7359): 224-7.

Son EY, Ichida JK, Wainger BJ, Toma JS, Rafu-se VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 2011; 9(3): 205-18.

Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult

pancreatic exocrine cells to (3-cells. Nature 2008; 455(7213): 627-632.

Qian L, Huang Y, Spencer CI, Foley A, Ve-dantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiom-yocytes. Nature 2012; 485(7400): 593-8.

Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Na-ture 2012; 485(7400): 599-604.

Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 2011; 12(4): 243-52.

Ferreira LM, Floriddia EM, Quadrato G, Di Giovanni S. Neural Regeneration: Lessons from Regenerating and Non-regenerating Systems. Mol Neurobiol 2012; 46(2): 227-41.

Ahfeldt T, Schinzel RT, Lee YK, Hendrickson D, Kaplan A, Lum DH, et al. Programming human pluripotent stem cells into white and brown adi-pocytes. Nat Cell Biol 2012; 14(2): 209-19.

Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of Embryonic Stem Cells to Insulin-Secreting Structures Similar to Pancreatic Islets. Science 2001; 292: 1389-1393.

Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009; 19(4): 429-38.

Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, Brownstone RM. Functional proper-ties of motoneurons derived from mouse embryo-nic stem cells. J Neurosci 2004; 24(36): 7848-58.

Takazawa T, Croft GF, Amoroso MW, Studer L, Wichterle H, Macdermott AB. Maturation of spinal motor neurons derived from human em-bryonic stem cells. PLoS One. 2012; 7(7): e40154.

Easley CAt, Phillips BT, McGuire MM, Barrin-ger JM, Valli H, Hermann BP, et al. Direct diffe-rentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2012; 2(3): 440-6.

Hayashi K, Ogushi S, Kurimoto K, Shimamo-to S, Ohta H, Saitou M. Offspring from Oocytes Derived from in Vitro Primordial Germ Cell-Like Cells in Mice. Science. En prensa 2012.

Xu Y, Liu L, Zhang L, Fu S, Hu Y, Wang Y, et al. Efficient commitment to functional CD34+ progenitor cells from human bone marrow mes-enchymal stem-cell-derived induced pluripotent stem cells. PLoS One 2012; 7(4): e34321.

Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318(5858): 1920-3.

Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012; 482(7384): 216-20.

Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, et al. Parkinsons disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2011; 2: 440.

An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, et al. Genetic correction of Huntingtons disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012; 11(2): 253-63.

Li LB, Chang KH, Wang PR, Hirata RK, Papa-yannopoulou T, Russell DW. Trisomy Correction in Down Syndrome Induced Pluripotent Stem Cells. Cell Stem Cell 2012; 11(5): 615-619.

Yamanaka S. Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell 2012; 10(6): 678-684.

Descargas

Publicado

2022-09-20

Cómo citar

1.
Mostajo-Radji MA, R. Ferreira LM. Cambiando la Identidad celular para crear una verdadera medicina personalizada: Células madre, pluripotencia inducida y reprogramación celular. GMB [Internet]. 20 de septiembre de 2022 [citado 13 de febrero de 2025];35(2):76-9. Disponible en: http://www.gacetamedicaboliviana.com/index.php/gmb/article/view/369

Número

Sección

Articulos especiales