Comparación de la PCR GP5+/GP6+BIO–EIAe INNO-LiPA para la detección de genotipos de alto riesgo del virus del papiloma humano en Cochabamba, Bolivia

Autores/as

  • Maria Isabel Garcia-Sejas Laboratorio de Virología, Facultad de Medicina, Universidad Mayor de San Simón
  • Tania Vargas Laboratorio de Virología, Facultad de Medicina, Universidad Mayor de San Simón
  • Karina Ustariz Laboratorio de Virología, Facultad de Medicina, Universidad Mayor de San Simón
  • Shirley Rojas Laboratorio de Virología, Facultad de Medicina, Universidad Mayor de San Simón
  • Rosse Mary Yañez Laboratorio de Virología, Facultad de Medicina, Universidad Mayor de San Simón
  • Patricia Rodríguez Laboratorio de Virología, Facultad de Medicina, Universidad Mayor de San Simón

DOI:

https://doi.org/10.47993/gmb.v47i2.818

Palabras clave:

virus del papiloma humano, neoplasias del cuello uterino, PCR, EIA, INNO-LiPA, genotipado de VPH

Resumen

El principal factor de riesgo para el desarrollo del cáncer cervical es la infección persistente con genotipos de alto riesgo del virus del papiloma humano (VPH-AR). Muchos métodos para la detección de VPH-AR están disponibles comercialmente, y su uso como método de tamizaje está contribuyendo a la disminución de la incidencia de cáncer de cuello uterino en varios países.

Objetivo: el propósito de este trabajo fue evaluar la eficacia de la PCR con cebadores GP5+/GP6+BIO-EIA, comparándola con la técnica de INNO-LiPA, utilizada como estándar de oro para la detección de infecciones por VPH-AR, en especial VPH 16/18.

Métodos: se analizaron en paralelo 98 muestras cervicales positivas para PCR PGMY09/11 o PCR anidada GP5/6, mediante PCR GP5+/GP6+BIO seguida de un inmunoensayo (EIA) y por PCR SPF10 seguida de una hibridación reversa (INNO-LiPA). El nivel de concordancia se determinó con el valor Kappa de Cohen.

Resultados: en el análisis de concordancia para detectar VPH-AR valores de Kappa para INNO-LiPA y PCR GP5+/GP6+BIO-EIA en multi-infecciones y mono-infecciones fueron de 0,3 (95 % IC, 0,11-0,44) y 0,6 (95 % IC, 0,32-0,89) respectivamente. En general, la concordancia para detectar VPH-AR 16/18 entre ambos métodos fue moderada, con un Kappa de 0,5 (95 % IC, 0,34-0,67) y 0,7 (95 % IC, 0,48-0,95) en mono-infecciones (VPH 16 o 18).

Conclusiones: los hallazgos de comparación entre la PCR GP5+/GP6+BIO-EIA y la técnica INNO-LiPA muestran de pobre a moderada concordancia para la detección de VPH-AR y de moderada a buena, para la detección de VPH 16 o 18.

Métricas

Cargando métricas ...

Citas

Bruni L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, et al. Human Papillomavirus and Related Diseases in the World- Summary report. ICO/IARC Inf Cent HPV Cancer (HPV Inf Centre). 2019;(June):307.

Bruni L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, et al. Human Papillomavirus and Related Diseases Report WORLD BOLIVIA (PLURINA- TIONAL STATE OF). ICO/IARC Inf Cent HPV Cancer (HPV Inf Centre). 2019;(June).

Schiffman M, Wentzensen N. From human papillomavirus to cervical cancer. Obstet Gynecol. 2010 Jul;116(1):177–85. DOI: https://doi.org/10.1097/AOG.0b013e3181e4629f

Walboomers JMM, Jacobs M V., Manos MM, Bosch FX, Kummer JA, Shah K V., et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9. DOI: https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F

Bernard H-U, Burk RD, Chen Z, Koenraad D van, Al E. Classification of Papillomaviruses (PVs) Based on 189 PV Types and Proposal of Taxonomic Amendments. Virology. 2010;401(1):70–9. DOI: https://doi.org/10.1016/j.virol.2010.02.002

de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, zur Hausen H. Classification of papillomaviruses. Virology. 2004 Jun 20;324(1):17–27. DOI: https://doi.org/10.1016/j.virol.2004.03.033

Muñoz N, Bosch FX, De Sanjosé S, Herrero R, Castellsagué X, Shah K V., et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27. DOI: https://doi.org/10.1056/NEJMoa021641

Burd EM. Human papillomavirus and cervical cancer. Vol. 16, Clinical Microbiology Reviews. American Society for Microbiology Journals; 2003. p. 1–17. DOI: https://doi.org/10.1128/CMR.16.1.1-17.2003

Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24(SUPPL. 3):1–10. DOI: https://doi.org/10.1016/j.vaccine.2006.05.115

Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens--Part B: biological agents. Lancet Oncol. 2009;10(4):321–2. DOI: https://doi.org/10.1016/S1470-2045(09)70096-8

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. Vol. 100, IARC monographs on the evaluation of carcinogenic risks to humans / World Health Organization, International Agency for Research on Cancer. 2012. p. 1–441.

Schiffman M, Wentzensen N, Wacholder S, Kinney W, Gage JC, Castle PE. Human papillomavirus testing in the prevention of cervical cancer. Vol. 103, Journal of the National Cancer Institute. 2011. p. 368–83. DOI: https://doi.org/10.1093/jnci/djq562

Arbyn M, Ronco G, Anttila A, Chris CJL, Poljak M, Ogilvie G, et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine. 2012;30(SUPPL.5):F88–99. DOI: https://doi.org/10.1016/j.vaccine.2012.06.095

Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJF, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet. 2014 Feb 8;383(9916):524–32. DOI: https://doi.org/10.1016/S0140-6736(13)62218-7

Fontaine V, Mascaux C, Weyn C, Bernis A, Celio N, Lefèvre P, et al. Evaluation of combined general primer-mediated PCR sequencing and type-specific PCR strategies for determination of human papillomavirus genotypes in cervical cell specimens. J Clin Microbiol. 2007;45(3):928–34. DOI: https://doi.org/10.1128/JCM.02098-06

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (80- ). 1988;239(4839):487–91. DOI: https://doi.org/10.1126/science.239.4839.487

Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlée F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38(1):357–61. DOI: https://doi.org/10.1128/JCM.38.1.357-361.2000

De Roda Husman AM, Walboomers JMM, Van den Brule AJC, Meijer CJLM, Snijders PJF. The use of general primers GP5 and GP6 elongated at their 3’ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995;76(4):1057–62. DOI: https://doi.org/10.1099/0022-1317-76-4-1057

Jacobs M V., Van Den Bride AJC, Snijders PJF, Helmerhorst TJM, Meijer CJLM, Walboomers JMM. A non-radioactive PCR enzyme-immunoassay enables a rapid identification of HPV 16 and 18 in cervical scrapes after GP5+/6+ PCR. J Med Virol. 1996;49(3):223–9. DOI: https://doi.org/10.1002/(SICI)1096-9071(199607)49:3<223::AID-JMV11>3.0.CO;2-D

Jacobs M V., Snijders PJF, Van den Brule AJC, Helmerhorst TJM, Meijer CJLM, Walboomers JMM. A general primer GP5+/GP6+-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol. 1997;35(3):791–5. DOI: https://doi.org/10.1128/jcm.35.3.791-795.1997

Moller M, Viscidi RP, Sun Y, Guerrero E, Hill PM, Shah F, et al. Antibodies to HPV-16 E6 and E7 proteins as markers for HPV-16-associated invasive cervical cancer. Virology. 1992;187(2):508–14. DOI: https://doi.org/10.1016/0042-6822(92)90453-V

Kleter B, Van Doorn LJ, Ter Schegget J, Schrauwen L, Van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am J Pathol. 1998;153(6):1731–9. DOI: https://doi.org/10.1016/S0002-9440(10)65688-X

Altman D. PRACTICAL STATISTICS FOR MEDICAL RESEARCH. 1990. DOI: https://doi.org/10.1201/9780429258589

Kleter B, Van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, Ter Schegget J, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol. 1999;37(8):2508–17. DOI: https://doi.org/10.1128/JCM.37.8.2508-2517.1999

Iftner T, Villa LL. Chapter 12: Human papillomavirus technologies. J Natl Cancer Inst Monogr. 2003;(31):80–8. DOI: https://doi.org/10.1093/oxfordjournals.jncimonographs.a003487

Jacobs M V., Walboomers JMM, Snijders PJF, Voorhorst FJ, Verheijen RHM, Fransen-Daalmeijer N, et al. Distribution of 37 mucosotropic HPV types in women with cytologically normal cervical smears: The age-related patterns for high-risk and low-risk types. Int J Cancer. 2000 Jul 15;87(2):221–7. DOI: https://doi.org/10.1002/1097-0215(20000715)87:2<221::AID-IJC11>3.0.CO;2-2

Qu W, Jiang G, Cruz Y, Chang CJ, Ho GYF, Klein RS, et al. PCR detection of human papillomavirus: Comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol. 1997;35(6):1304–10.

Else EA, Swoyer R, Zhang Y, Taddeo FJ, Bryan JT, Lawson J, et al. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay. J Clin Microbiol. 2011 May;49(5):1907–12. DOI: https://doi.org/10.1128/JCM.00236-10

Chung HS, Lee M. Comparison of the AdvanSure HPV GenoBlot assay with the INNO-LiPA HPV Genotyping assay for human papillomavirus genotyping. J Clin Virol. 2014;60(1):34–8. DOI: https://doi.org/10.1016/j.jcv.2014.01.027

Xu L, Padalko E, Oštrbenk A, Poljak M, Arbyn M. Clinical evaluation of INNO-LiPA HPV genotyping extra II assay using the VALGENT framework. Int J Mol Sci. 2018;19(9):1–11. DOI: https://doi.org/10.3390/ijms19092704

Gillio-Tos A, De Marco L, Ghisetti V, Snijders PJF, Segnan N, Ronco G, et al. Human papillomavirus typing with GP5+/6+ polymerase chain reaction reverse line blotting and with commercial type-specific PCR kits. J Clin Virol. 2006;36(2):126–32. DOI: https://doi.org/10.1016/j.jcv.2006.03.002

Hesselink AT, Van Ham MAPC, Heideman DAM, Groothuismink ZMA, Rozendaal L, Berkhof J, et al. Comparison of GP5+/6+-PCR and SPF10-line blot assays for detection of high-risk human papillomavirus in samples from women with normal cytology results who develop grade 3 cervical intraepithelial neoplasia. J Clin Microbiol. 2008;46(10):3215–21. DOI: https://doi.org/10.1128/JCM.00476-08

Qu W, Jiang G, Cruz Y, Chang CJ, Ho GYF, Klein RS, et al. PCR detection of human papillomavirus: Comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol. 1997 Jun;35(6):1304–10. DOI: https://doi.org/10.1128/jcm.35.6.1304-1310.1997

Chan PKS, Cheung TH, Tam AOY, Lo KWK, Yim SF, Yu MMY, et al. Biases in human papillomavirus genotype prevalence assessment associated with commonly used consensus primers. Int J Cancer. 2006 Jan 1;118(1):243–5. DOI: https://doi.org/10.1002/ijc.21299

Van den Brule AJC, Pol R, Fransen-Daalmeijer N, Schouls LM, Meijer CJLM, Snijders PJF. GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol. 2002;40(3):779–87. DOI: https://doi.org/10.1128/JCM.40.3.779-787.2002

Szostek S, Klimek M, Zawilinska B, Kosz-Vnenchak M. Genotype-specific human papillomavirus detection in cervical smears. Acta Biochim Pol. 2008;55(4):687–92. DOI: https://doi.org/10.18388/abp.2008_3028

Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta-analysis update. Int J Cancer. 2007;121:621–32. DOI: https://doi.org/10.1002/ijc.22527

Schmitt M, Dondog B, Waterboer T, Pawlita M. Homogeneous amplification of genital human alpha papillomaviruses by PCR using novel broad-spectrum GP5+ and GP6+ primers. J Clin Microbiol. 2008 Mar;46(3):1050–9. DOI: https://doi.org/10.1128/JCM.02227-07

Surriabre P, Torrico A, Vargas T, Ugarte F, Rodriguez P, Fontaine V. Assessment of a new low-cost, PCR-based strategy for high-risk human papillomavirus DNA detection for cervical cancer prevention. BMC Infect Dis. 2019 Oct 15;19(1). DOI: https://doi.org/10.1186/s12879-019-4527-9

Descargas

Publicado

2024-07-11

Cómo citar

1.
Garcia-Sejas MI, Vargas T, Ustariz K, Rojas S, Yañez RM, Rodríguez P. Comparación de la PCR GP5+/GP6+BIO–EIAe INNO-LiPA para la detección de genotipos de alto riesgo del virus del papiloma humano en Cochabamba, Bolivia. GMB [Internet]. 11 de julio de 2024 [citado 13 de febrero de 2025];47(2):26-32. Disponible en: http://www.gacetamedicaboliviana.com/index.php/gmb/article/view/818

Número

Sección

Artículos Originales

Artículos más leídos del mismo autor/a