Inteligencia artificial en el abordaje clínico del cáncer de pulmón en el continuum asistencial: revisión crítica
Inteligencia artificial y cáncer de pulmón
DOI:
https://doi.org/10.47993/gmb.v48i2.1134Palabras clave:
cáncer de pulmón, cribado, diagnóstico de precisión, equidad sanitaria, inteligencia artificialResumen
Objetivos: Analizar el impacto de la inteligencia artificial en el abordaje integral del cáncer pulmonar, evaluando sus aplicaciones diagnósticas, terapéuticas y pronósticas, así como las barreras para su implementación clínica en el periodo 2021-2025. Métodos: se realizó una revisión narrativa sobre estudios basados en el uso de algoritmos aplicados a la prevención personalizada, el cribado automatizado, el diagnóstico de precisión y la estratificación pronóstica individualizada. Resultados: se identificaron beneficios potenciales como mayor sensibilidad en detección temprana y optimización de decisiones terapéuticas, junto con limitaciones asociadas a opacidad algorítmica, sesgos en datos, falta de validación robusta e inequidad en el acceso. Conclusiones: la integración de inteligencia artificial en oncología torácica requiere combinar juicio clínico, capacidad computacional y gobernanza ética para lograr un impacto equitativo y sostenible.
Métricas
Citas
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. DOI: https://doi.org/10.3322/caac.21492
Zarinshenas R, Amini A, Mambetsariev I, Abuali T, Fricke J, Ladbury C, et al. Assessment of barriers and challenges to screening, diagnosis, and biomarker testing in early-stage lung cancer. Cancers (Basel). 2023;15(5):1595. doi: 10.3390/cancers15051595. DOI: https://doi.org/10.3390/cancers15051595
Attili I, Del Re M, Guerini-Rocco E, Crucitta S, Pisapia P, Pepe F, et al. The role of molecular heterogeneity targeting resistance mechanisms to lung cancer therapies. Expert Rev Mol Diagn. 2021;21(8):757-66. doi: 10.1080/14737159.2021.1943365. DOI: https://doi.org/10.1080/14737159.2021.1943365
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12:134. doi: 10.1186/s13045-019-0818-2. DOI: https://doi.org/10.1186/s13045-019-0818-2
Huang Q, Li Y, Huang Y, Wu J, Bao W, Xue C, et al. Advances in molecular pathology and therapy of non-small cell lung cancer. Signal Transduct Target Ther. 2025;10:186. doi: 10.1038/s41392-025-02243-6. DOI: https://doi.org/10.1038/s41392-025-02243-6
Cognigni V, Toscani I, D'Agnelli S, Pecci F, Righi L, Berardi R, et al. Molecular heterogeneity of small cell lung cancer and new therapeutic possibilities: a narrative review of the literature. Transl Lung Cancer Res. 2025;14(4). doi: 10.21037/tlcr-24-755. DOI: https://doi.org/10.21037/tlcr-24-755
Zhu L, Jiang M, Wang H, Sun H, Zhu J, Zhao W, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann Transl Med. 2021;9(16):1351. doi: 10.21037/atm-21-1948. DOI: https://doi.org/10.21037/atm-21-1948
Kanan M, Alharbi H, Alotaibi N, Almasuood L, Aljoaid S, Alharbi T, et al. AI-driven models for diagnosing and predicting outcomes in lung cancer: a systematic review and meta-analysis. Cancers (Basel). 2024;16(3):674. doi: 10.3390/cancers16030674. DOI: https://doi.org/10.3390/cancers16030674
Liu M, Wu J, Wang N, Zhang X, Bai Y, Guo J, et al. The value of artificial intelligence in the diagnosis of lung cancer: a systematic review and meta-analysis. PLoS One. 2023;18(3):e0273445. doi: 10.1371/journal.pone.0273445. DOI: https://doi.org/10.1371/journal.pone.0273445
Wang S, Rong R, Zhou Q, Yang DM, Zhang X, Zhan X, et al. Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images. Nat Commun. 2023;14:7872. doi: 10.1038/s41467-023-43172-8. DOI: https://doi.org/10.1038/s41467-023-43172-8
Alkhathami MG, Advani SM, Abalkhail AA, Alkhathami FM, Alshehri MK, Albeashy E, et al. Prevalence and mortality of lung comorbidities among patients with COVID-19: a systematic review and meta-analysis. Respir Med. 2020. doi: 10.1101/2020.06.01.20119271. DOI: https://doi.org/10.1101/2020.06.01.20119271
Mercadante S, Masedu F, Valenti M, Aielli F. Breakthrough pain in patients with lung cancer. A secondary analysis of IOPS MS study. J Clin Med. 2020;9(5):1337. doi: 10.3390/jcm9051337. DOI: https://doi.org/10.3390/jcm9051337
Zhao G, Li X, Lei S, Zhao H, Zhang H, Li J. Prevalence of lung cancer in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Front Oncol. 2022;12:947981. doi: 10.3389/fonc.2022.947981. DOI: https://doi.org/10.3389/fonc.2022.947981
Shen J, Crothers K, Kross EK, Petersen K, Melzer AC, Triplette M. Provision of smoking cessation resources in the context of in-person shared decision-making for lung cancer screening. Chest. 2021;160(2):765-75. doi: 10.1016/j.chest.2021.03.016. DOI: https://doi.org/10.1016/j.chest.2021.03.016
Shao X, Niu R, Shao X, Jiang Z, Wang Y. Value of 18F-FDG PET/CT-based radiomics model to distinguish the growth patterns of early invasive lung adenocarcinoma manifesting as ground-glass opacity nodules. EJNMMI Res. 2020;10:80. doi: 10.1186/s13550-020-00668-4. DOI: https://doi.org/10.1186/s13550-020-00668-4
Chen AW, Patel O, Cohen E, Roshkovan L, Kontos D. Radiomic phenotypes of the background lung parenchyma from F-FDG PET/CT images can augment tumor radiomics and clinical factors in predicting response after surgical resection of tumors in patients with non-small cell lung cancer. In: Astley SM, Chen W, editors. Medical Imaging 2024: Computer-Aided Diagnosis. Bellingham: SPIE; 2024. p. 102. doi: 10.1117/12.3006944. DOI: https://doi.org/10.1117/12.3006944
Liu S, Liu S, Zhang C, Yu H, Liu X, Hu Y, et al. Exploratory study of a CT radiomics model for the classification of small cell lung cancer and non-small-cell lung cancer. Front Oncol. 2020;10:1268. doi: 10.3389/fonc.2020.01268. DOI: https://doi.org/10.3389/fonc.2020.01268
El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, et al. The role of radiomics in lung cancer: from screening to treatment and follow-up. Front Oncol. 2021;11:603595. doi: 10.3389/fonc.2021.603595. DOI: https://doi.org/10.3389/fonc.2021.603595
Tunali I, Tan Y, Gray JE, Katsoulakis E, Eschrich SA, Saller J, et al. Hypoxia-related radiomics and immunotherapy response: a multicohort study of non-small cell lung cancer. JNCI Cancer Spectr. 2021;5(4):pkab048. doi: 10.1093/jncics/pkab048. DOI: https://doi.org/10.1093/jncics/pkab048
Tian F, Chen Z, Chen X, Zhao M. Increasing trends of polypharmacy and potentially inappropriate medication use in older lung cancer patients in China: a repeated cross-sectional study. Front Pharmacol. 2022;13:935764. doi: 10.3389/fphar.2022.935764. DOI: https://doi.org/10.3389/fphar.2022.935764
Wu YJ, Wu FZ, Yang SC, Tang EK, Liang CH. Radiomics in early lung cancer diagnosis: from diagnosis to clinical decision support and education. Diagnostics (Basel). 2022;12(5):1064. doi: 10.3390/diagnostics12051064. DOI: https://doi.org/10.3390/diagnostics12051064
Haghighi B, Horng H, Noël PB, Cohen EA, Pantalone L, Vachani A, et al. Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort. Sci Rep. 2023;13:2040. doi: 10.1038/s41598-023-29058-1. DOI: https://doi.org/10.1038/s41598-023-29058-1
Rinaldi L, Guerini Rocco E, Spitaleri G, Raimondi S, Attili I, Ranghiero A, et al. Association between contrast-enhanced computed tomography radiomic features, genomic alterations and prognosis in advanced lung adenocarcinoma patients. Cancers (Basel). 2023;15(18):4553. doi: 10.3390/cancers15184553. DOI: https://doi.org/10.3390/cancers15184553
Dercle L, Fronheiser M, Lu L, Du S, Hayes W, Leung DK, et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res. 2020;26(9):2151-62. doi: 10.1158/1078-0432.CCR-19-2942. DOI: https://doi.org/10.1158/1078-0432.CCR-19-2942
Song L, Zhu Z, Mao L, Li X, Han W, Du H, et al. Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients. Front Oncol. 2020;10:369. doi: 10.3389/fonc.2020.00369. DOI: https://doi.org/10.3389/fonc.2020.00369
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, et al. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(12):3961-74. doi: 10.1007/s00259-021-05242-1. DOI: https://doi.org/10.1007/s00259-021-05242-1
Guo H, Tang HT, Hu WL, Wang JJ, Liu PZ, Yang JJ, et al. The application of radiomics in esophageal cancer: predicting the response after neoadjuvant therapy. Front Oncol. 2023;13:1082960. doi: 10.3389/fonc.2023.1082960. DOI: https://doi.org/10.3389/fonc.2023.1082960
Le NQK, Kha QH, Nguyen VH, Chen YC, Cheng SJ, Chen CY. Machine learning-based radiomics signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. Int J Mol Sci. 2021;22(17):9254. doi: 10.3390/ijms22179254. DOI: https://doi.org/10.3390/ijms22179254
Sun R, Lerousseau M, Briend-Diop J, Routier E, Roy S, Henry T, et al. Radiomics to evaluate interlesion heterogeneity and to predict lesion response and patient outcomes using a validated signature of CD8 cells in advanced melanoma patients treated with anti-PD1 immunotherapy. J Immunother Cancer. 2022;10(10):e004867. doi: 10.1136/jitc-2022-004867. DOI: https://doi.org/10.1136/jitc-2022-004867
Morley J, Machado CCV, Burr C, Cowls J, Joshi I, Taddeo M, et al. The ethics of AI in health care: a mapping review. Soc Sci Med. 2020;260:113172. doi: 10.1016/j.socscimed.2020.113172. DOI: https://doi.org/10.1016/j.socscimed.2020.113172
Iqbal J, Jahangir K, Mashkoor Y, Sultana N, Mehmood D, Ashraf M, et al. The future of artificial intelligence in neurosurgery: a narrative review. Surg Neurol Int. 2022;13:536. doi: 10.25259/sni_877_2022. DOI: https://doi.org/10.25259/SNI_877_2022
Arigbabu AT, Olaniyi OO, Adigwe CS, Adebiyi OO, Ajayi SA. Data governance in AI-enabled healthcare systems: a case of the Project Nightingale. Am J Res Comput Sci. 2024;17(5):85-107. doi: 10.9734/ajrcos/2024/v17i5441. DOI: https://doi.org/10.9734/ajrcos/2024/v17i5441
Cavique L. Implications of causality in artificial intelligence. Front Artif Intell. 2024;7:1439702. doi: 10.3389/frai.2024.1439702. DOI: https://doi.org/10.3389/frai.2024.1439702
Sengupta D. Artificial intelligence in diagnostic dermatology: challenges and the way forward. Indian Dermatol Online J. 2023;14(6):782-7. doi: 10.4103/idoj.idoj_462_23. DOI: https://doi.org/10.4103/idoj.idoj_462_23
Mwogosi A. Ethical and privacy challenges of integrating generative AI into EHR systems in Tanzania: a scoping review with a policy perspective. Digit Health. 2025;11:20552076251344385. doi: 10.1177/20552076251344385. DOI: https://doi.org/10.1177/20552076251344385
Alfaraj A, Nagai T, AlQallaf H, Lin WS. Race to the moon or the bottom? Applications, performance, and ethical considerations of artificial intelligence in prosthodontics and implant dentistry. Dent J (Basel). 2024;13(1):13. doi: 10.3390/dj13010013. DOI: https://doi.org/10.3390/dj13010013
Tavory T. Regulating AI in mental health: ethics of care perspective. JMIR Ment Health. 2024;11:e58493. doi: 10.2196/58493. DOI: https://doi.org/10.2196/58493
Ricciardi Celsi L. The dilemma of rapid AI advancements: striking a balance between innovation and regulation by pursuing risk-aware value creation. Information (Basel). 2023;14(12):645. doi: 10.3390/info14120645. DOI: https://doi.org/10.3390/info14120645
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Gaceta Médica Boliviana

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.


















